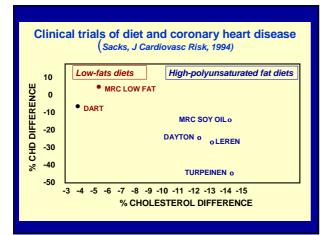


Fat Type	Amount	Convincing or probable evidence
Total fat	20-35% E	No association CHD, cancers
SFA	10% E	Increase LDL-C
MUFA		Decrease LDL-C if substit for SFA
PUFA total	6-11% E	Decrease LDL-C if substit for SFA
		Decrease CHD if substit for SFA
n-6 PUFA	2.5-9% E	Decrease LDL-C if substit for SFA
		Decrease CHD if substit for SFA
n-3 PUFA	0.5-2% E	Decrease CHD fatal events
Trans Fat	<1% E	Decrease HDL-C,
		Increase CHD

Joint FAO/WHO Expert consultation on Fatty

Women's Health Initiative CVD events by low fat dietary intervention group


Why no effect in trial?

No association between diet and CHD Too late to intervene Too little change (little change in CVD risk factors) Wrong target e.g. fatty acid balance not total fat important?

Baseline in intervention group and difference in nutrient intakes at year 6 in intervention and comparison group, WHI

	Baseline	Difference yr6
Total energy kcal/day	1790	-113
Total fat % energy	38%	-8%
Sat fat % energy	13%	-3%
Poly unsat % energy	8%	-1.5%
PS ratio	0.6	0
Fibre g/d	15.4	+2.4
Protein	16.5	+0.6
Carbohydrate	45.6	+8.1
Vegetables and fruit servings da	ily 3.6	+1.1
Nuts servings/week	1.5	-0.8
Fish servings/week	1.9	0

Howard et al JAMA 2006

		neta analysi	5
	Risk Ratio		Risk Ratio
Study or Subgroup	IV, Random, 95% Cl	Year	IV, Random, 95% Cl
Coronary Heart	Disease		
Shekelle et al(17)	1.11 [0.91, 1.36]	1981	+
McGee et al(9) ¹	0.86 [0.67, 1.12]	1984	-+
Kushi et al(13)	1.33 [0.95, 1.87]	1985	
Posner et al(16)	0.92 [0.68, 1.24]		
Goldbourt et al(35) ¹	0.86 [0.56, 1.35]	1993	
Fehily et al(28)	1.57 [0.56, 4.42]	1994	
Ascherio et al(4) ¹	1.11 [0.87, 1.42]	1996	+-
Esrey et al(6)	0.97 [0.80, 1.18]		+
Mann et al(32)	2.77 [1.25, 6.13]		
Pietinen et al(15)	0.93 [0.60, 1.44]		
Boniface et al(5) ¹	1.37 [1.17, 1.60]		+
Jakobsen et al(8) ¹	1.03 [0.66, 1.60]		
Oh et al (33)	0.97 [0.74, 1.27]		+
Tucker et al(18) ¹	1.22 [0.31, 4.77]		
Xu et al(10)	1.91 [0.31, 11.84]		
Leosdottir et al(14)	0.95 [0.74, 1.21]	2007	-
Subtotal (95% CI)	1.07 [0.96, 1.19]		•

Why little association within cohorts?

Small inter individual variation

Large measurement error for fats

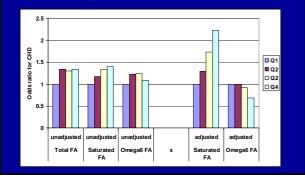
Dietary instruments unable to discriminate between different fatty acids

Heterogeneity in metabolic and consequent health effects different fatty acids

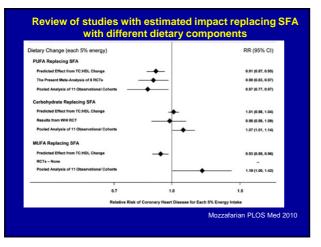
Balance between different fatty acids important

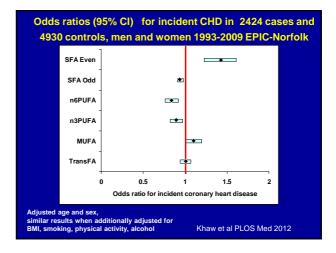
Objective biomarkers?

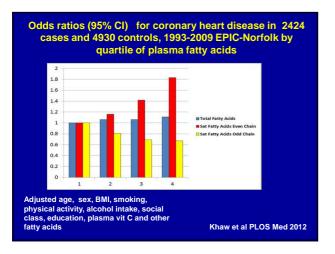
EPIC*-Norfolk population study


Aims: to improve health through better understanding of the major determinants health in middle and later life

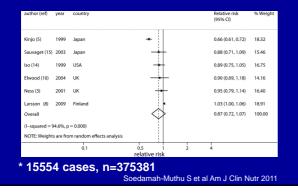
25,000 men and women 40-79 years from GP age-sex registers in Norfolk, UK Baseline survey 1993-1997 Extensive lifestyle and biologic information Followed up for health endpoints to present

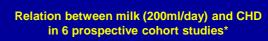

* Part of European Prospective Investigation into Cancer: a 10 country collaboration with 500,000 participants

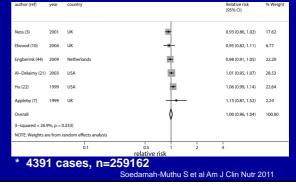

http://www.epic-norfolk.ora.uk

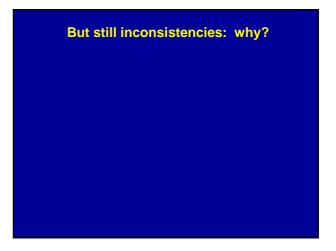

Age adjusted odds ratios for CHD by fatty acid quartile, unadjusted and adjusted for other fatty acids in CHD cases and controls, men and women 45-79 years, EPIC Norfolk 1993-2009

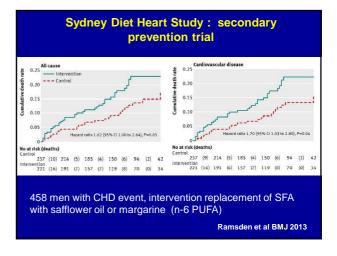
Total or individual categories of fatty acids are not very informative: need to take into account overall balance of fatty acids: e.g. saturated and unsaturated fatty acids

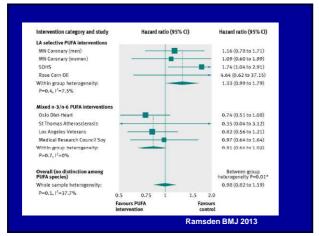


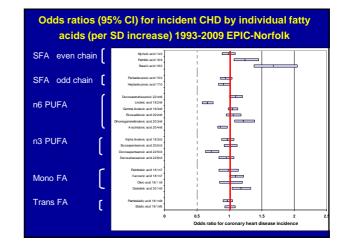


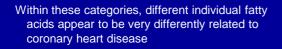


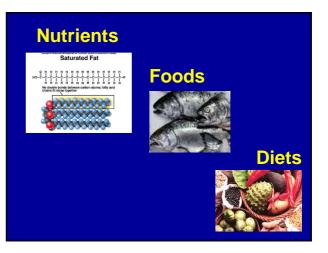

Relation between milk (200ml/day) and stroke in 6 prospective cohort studies*

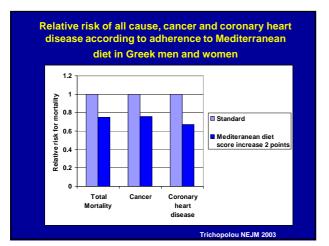


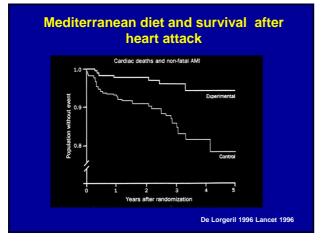



Metaanalysis pro in high vs low conditions	milk/dair	y con	sumpti	ion	foi	diff	ere		ks	
	d	umberof NathsEngland Nd Wales 2008	Relative risk (95% CI)							
	All causes	505,090	0.87 (0.77 - 0.98)				-	-		
	Ischaemic heart disea	198 76,985	0.92 (0.80 - 0.99)				-•	-		
	Thromboembolic stroke	46,446	0.79 (0.68 - 0.91)			-	•			
	Haemorrhagic stroke	7,497	0.75 (0.60 - 0.94)				•—			
]	Sub-arachnoid stroke	8,000'	0.65 (0.32 - 1.31)			•		-		
]	Type 2 diabetes	5,541	0.85 (0.75 - 0.96)				-•	-		
25 50 75 100 400 450 50 umber of deaths in England and Wales 2008 (t				0.2	0.4	0.6 Relativ	0.8 e risk (9		1.2	1.
				Elwo	bod	et al I	Lipids	s 201	0	

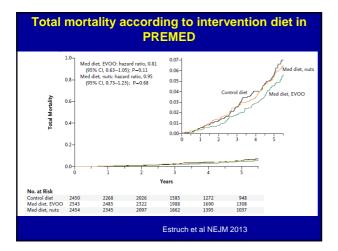


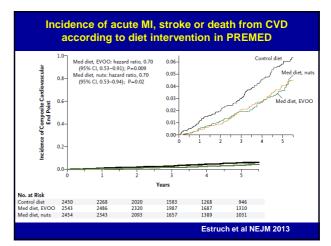






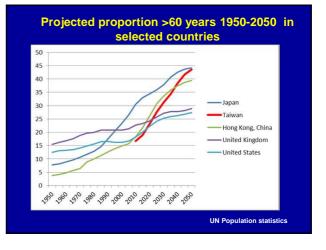
May be indicators of different food sources and interactions with other nutrients

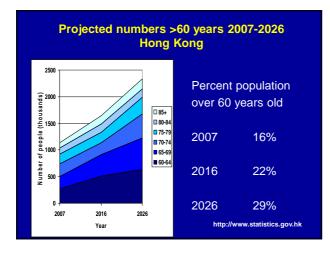


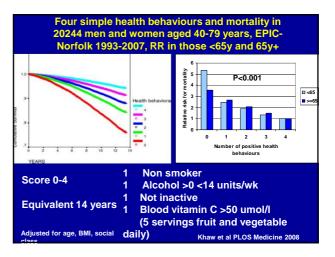


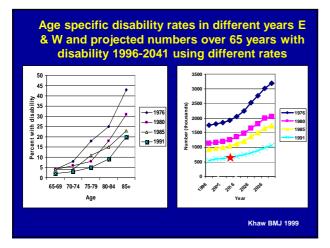
Mediterranean diet and secondary
prevention of CHD: intake g/day

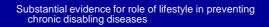
Foods	Control	Experimental
Bread	145	167**
Vegetables	288	316
Fruit	203	251*
Delicatessen and	74	47*
meat		
Butter and cream	17	3**
Margarine	5	19**
Fish	40	47
		Lorgeril Lancet 1994


American Heart Association Guidelines ?


Limit total fat <25-35% total energy Limit saturated fat <7% total energy Limit trans fat <1% total daily energy Remaining fat should come from sources of unsaturated fat e.g nuts, seeds, fatty fish, vegetable oils


Eg. 2000 cals daily intake should have <15g saturated fat, <2g transfat ,55-77g total fat from other sources.


Joint FAO/WHO Expert consultation on Fatty Acids and Fats, 2008


- "Inherent limitations with the convention of grouping fatty acids based only on number of double bonds....major groups of fatty acids are associated with different health effects. However, the consultation experts recognised that individual fatty acids within each broad classification may have unique biological properties or effects...
- Intakes of individual fatty acids differ across world depending on predominant food sources of total fats and oils."

No smoking Physical activity,

Dietary patterns

- Higher fruit and vegetable intake Higher unsaturated/saturated fat ratio Lower processed food : lower sodium, higher potassium

BUT: specificity still uncertain fatty acids similar issues: carbohydrates, other nutrients Biomarkers may help clarify relationships

What we can learn from Hong Kong experience

Hong Kong: traditionally low CHD rates compared to West and high stroke

Traditional diets low in animal products Can we retain benefits of traditional Chinese diet while reducing adverse aspects e.g. high salt, high refined carbohydrate?